
                                         Journal of Advanced Bioinformatics Applications and Research       
ISSN 0976-2604.Online ISSN 2278–6007 

                                                         Vol 5, Issue2, 2014, pp56-71                                       
http://www.bipublication.com 

 
 
 

ON THE ESTIMATION OF MUTATION RATE BASED ON COALESCENCE 
GENEALOGY 

 
 

Ao Yuan and Guanjie Chen 
 

National Human Genome Center, Howard University, Washington DC, USA. 
Center for Research on Genomics and Global Health, NHGRI, NIH, Bethesda, Maryland, USA. 

Email:chengu@mail.nih.gov 

 
[Received-03/01/2012, Accepted-01/04/2014] 

 
 
ABSTRACT:  
 
Estimating gene mutation rates using DNA data from a population since its coalescence is an important part in the study of 
evolutionary genetic history, and is of its own interest also. There are a number of existing methods for this goal and are 
successful in application, but formal asymptotic study is absent except for the Watterson estimator, such as consistency of 
the estimator and its rate. Since the observed data are genetically dependent, the problem is non-standard. Here we 
investigate the asymptotic property for the estimation of mutation rate in a given population under three common cases in 
practice, estimations based on coalescent tree, rooted tree and the total number of observed segregation sites only. We 
show, in each case, the strong consistency of the estimate, and its asymptotic normality with a very slow rate of (log n)1/2, 
in contrast to the standard rate of  n1/2for independently identically distributed data. Although this result is known several 
decades ago, we rediscovered this fact without knowing the previous results and the settings and consitions we used are not 
all the same as those previous studies. We also propose a simple simulation based method for the estimation of the 
mutation rate using DNA data. The result is illustrated by a segment of the mitochondrial data from an Amerindian tribal 
population, compared to some of the commonly used existing methods, and found to be consistent with these methods. 
 
Key words: Coalescence, Convergence rate, DNA data, Genealogy, Mutation rate.  

  
 
1. INTRODUCTION 
 
 In the past decades, considerable progress has been 
made in the field of population genetics. One of the 
main goals is to study the evolutionary history of a 
population under study since the time of their most 
recent common ancestor (MRCA), in which 
estimating the gene mutation rate in this population 
since coalescence is a precursory step and plays a 

fundamental role in the study. Also, mutation rate 
estimation has its Owen interest.  
The coalescent theory is a retrospective of 
population genetics that traces all genes in a sample 
from a population to a single ancestral copy shared 
by all the members of the population. The coalescent 
time of a population is the time of their MRCA at 
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which their ancestral history converge. The gene 
mutation rate since that time in the population 
directly affects the results in the study of the 
population evolutionary history. As an indispensable 
element in such study, the mutation rate is to be 
estimated using the observed DNA sequence 
diversity from a sample of n individuals 
independently drawn from the population of known 
size N . The problem is not as seemingly simple as 
the gene frequency estimation, since often mutations 
are rare events, the generations spans a long history, 
and the data are a highly dependent sample with 
varying dependence structure over generations. 
Also, the data should be from a relatively closed 
population, so its expensive and time consuming to 
collect.  
For this problem, there are many methods. 
Watterson [24] derived moment estimator using the 
number of observed segregating sites alone, 
Felsenstein [7] and Kuhner et al. [18] proposed 
maximum likelihood estimate (MLE) of related 
parameters. Fu and Li [8] and Fu [9] derived lower 
bound for the variance of the MLE and the best 
linear unbiased estimate, under the assumption that 
the number of mutations on each branch of the 
coalescent tree are known. Recently some studies 
[12,22,20,4,14,2,11] investigated mutation rate on 
on X or Y-chromosome microsatellite and mtDNA 
data without using the genealogy tree. However, 
asymptotical properties of these methods, such as 
consistency of the estimates and the asymptotic 
normality are not seen in the literature. Here the data 
is genealogically dependent, and evolve over time, 
the scenario is very different from the common case 
of independent and identically distributed (i.i.d.) 
data. Some simulation studies did not show apparent 
concentration of the estimator to the true parameter 
value as the sample size n  increases, although the 
accuracy improves a little bit. A natural question is: 
whether the estimator will be consistent as the 
number of samples n tends to infinity? If it does, at 
what rate? Here we investigate this problem under 
three common cases in practice, estimations based 

coalescent tree, rooted tree and the total number of 
segregating sites only (the Watterson estimator). We 
show the answer to the above problem is affirmative 
for each case, with common convergence rate of  
(log n)1/2 to normality.  
In contrast to the convergence rate of n1/2  in the case 
of i.i.d. data, the above rate is very slow. This is why 
sometimes apparent improvement in estimation of 
mutation rate is not observed with increased sample 
size. After our work is done, some readers point out 
that the asymptotic normality result has been known 
since around 1970, and that for the Watterson 
estimator has already been done by Klein et al [17]. 
However, our proof method is very different from 
theirs, and the settings and conditions used here are 
not all the same as in those previous studies.  
Also, often the DNA data only provides the number 
of segregating sites, not information in the form of a 
coalescent tree, nor the number of mutations in each 
branch of the genealogy tree. So methods based on 
likelihood models using coalescent tree or the 
number of mutations in each branch of the 
genealogy tree are not directly applicable. Also, the 
method using the number of segregating sites only 
does not use the prior information in the genealogy 
at all. Since the convergence rate of mutation rate 
estimation is very slow, estimation with finite 
sample size is more efficient if we implement such 
prior information. Here we propose a very simple 
simulation method for this problem, with the 
genealogy information - the prior coalescent times 
distribution implemented, without using neither the 
coalescent tree nor the number of mutations in each 
branch of the genealogy tree, as such information is 
not directly available for most DNA data. Also, the 
MLE of the mutation rate under the full data 
information of the form of a coalescent tree, the 
estimation turns out only depend on the total number 
of observed mutation sites in the data and the prior 
tree length. The latter is often unknown in practice. 
We implement such information by simulation from 
the prior coalescent distribution. The result is 
illustrated by a real example, compared to some of 
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the commonly used existing methods, and found to 
be consistent with these results.  
Mitochondrial DNA data are commonly used in 
gene mutation studies. It is one of the few genes 
exist outside the cell nucleus, and for mammalian it 
is only maternally inherited. Human mtDNA is a 
double-stranded molecule sequence about 16,500 
base pairs in length. It is known that the mutation 
rate in mtDNA is about 10 times that of the nuclear 
genes, and that on one part of the mitochondria, its 
control region, is even one order higher. The simple 
inheritance pattern and high variability make 
mtDNA an important source to study human 
evolutionary history. In Section 2, we give a brief 
review of the background of the problem and three 
commonly used methods. Section 3 studies the 
asymptotic behavior of these methods, with relevant 
proofs in the Appendix. Our study shows that for the 
estimation of the mutation rate θ  , all these methods 
are asymptotically equivalent with convergence rate 
(log n)1/2  , a much slower rate than the typical rate 
of  n1/2   for independent and identically distributed 
data. The reason is that the observed sequences are 
highly dependent. Thus, as the validity of asymptotic 
result requires impractically large sample size, in 
practice we should take as much genealogy 
information as possible. In section 4 we present our 
proposed method, and Section 5 illustrates its use on 
a segment of the mitochondrial data from an 
Amerindian tribal population, and compare the 
results with those of others, with brief concluding 
remarks in Section 6.  
 
2. Brief Review of Background and Related 
Methods  
The gene mutation rate is the probability that a 
mutant type occurs in a given reference time period. 
For example in many studies such time period is 
taken as per generation. In population history 
studies, the time period is since the coalescence of 
the population to present. The coalescent is a model 
for the genealogical tree of a random sample of   
nDNA sequences from a large population. An 

example of such coalescent tree of sample size n=7  
is given in Figure 1.  
{1cm} \centerline{Figure 1. about here} {1cm} 
\vspace*{1cm} %\centerline{\psfig 
{figure=mutfig1.ps,height=6cm,width=7cm,angle=0
}} %\begin{figure}[htb] %\caption{Coalescent tree 
for a sample of seven individuals.} %\end{figure}  
In this Figure, w2  is the time, in unit of 2N  
generations, between the points when the sample of 
seven people from a given population has 2 and a 
single common ancestor,  w3 is the time between the 
points when the sample has 3 and 2 common 
ancestors, etc. For more detailed reviews materials 
of this topic see Hudson [13], Donnelly and Tavaré 
S. [3].  
In coalescence inference there are some explicite 
and implicite assumptions in the literatures, which 
we list below.  
 
Basic assumptions:  
The population size N is large, remain unchanged for 
many generations into the past, and is known, or can 
be estimated from other sources; the data is a 
random sample from the population; the number of 
births in each generation follows the Wright-Fisher 
model (since the population is of constant size, the 
number of deaths also follow the similar model); 
mutation (substitution) at any nucleotide site can 
occur only once in the ancestry and is irreversible; 
mutations occur in different time intervals are 
independent; all loci have the same mutation rate; 
the time point at which mutation occurs follow a 
Poisson distribution with rate θ/2  to be defined 
latter, independently in each branch of the genealogy 
tree.  
Here estimating θ based on the observed DNA data 
and investigating its asymptotic behavior are the 
goals of our study. The inference of θ and that of the 
coalescence time tn of a sample population of size   n 
has close relationship. The latter has two steps. The 
first step is modeling the distribution of   without 
any data, the pre-data distribution; then in the second 
step, update the pre-data distribution, using the 
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observed data, to the post-data distribution, based on 
which the formal inference is conducted. The pre-
data distribution is pioneered by Kingman [15,16], 
who showed that in time units of  N generations, 

 

where the  's are independent waiting times,   is 
the duration between the sample had j  and  j-1 
common ancestors (see, for example, Tavaré S. , 

[25]). Here  is distributed as the exponential 

model    with mean 

. The 's can be represented 
graphically as a coalescent tree as in Figure 1, then   
is the height of the tree. Define the tree's total branch 

length as then (Kingman) 

  

 
Thus on average the coalescence time of N  people 
of the given population is about  2N generations 
back into the past. The time unit is transformed to 
years by the relationship tnNY  , where Y  is the 
average years of each generation, which usually 
taken as 20-25.  
Here we see that, as an initial analysis without the 
observed data, the coalescent time of a random 
sample of size n from a population of size N is 

roughly 2N generations, as long as   is 
moderately large. Thus the coalescent time of a sub-
sample from a population is roughly the same as that 
of the total population (as long as the sample size is 
moderately large). Here the sample must be a 
random draw from the population, otherwise the 
result may not be reliable. 

For mutation, the common assumption is that the 
times at which mutation occur follow a Poisson 
process with constant rate θ/2, so that in any branch 

of length   from the tree, the number of mutations 
on that branch has a Poisson distribution with mean 

, independently of the mutations on the other 
branches. For the time scale mentioned before, 

usually   , where  is the probability of a 
mutation occurs per sequence per generation. For 

DNA sequences,  is the sequence length (number 
of bases) times the mutation rate per site per 
generation. and often available from existing studies. 
Since the coalescent time of a sample with moderate 

size is approximately  generations,   can be 
approximately interpreted as the commulative (since 
the time of MRCA) mutation rate (number of 
mutations) per sequence. Also, since the population 

size is ,   can also be interpreted as the mutation 
rate of the whole population per generation.  

Thus given the mutation rate  and the tree length 

, the number of mutations  in a sample of   
individuals from the given population follow the 

Poisson distribution Po  [25]. 

 

 Note this probability does not depend on  , but on  

,  and . 
Now we come to the problem of estimating the 

mutation rate  . Given the sampled sequence data, 
we don't know which sites are mutant, and the data 
have inhomogeneous dependence among them. So 
the estimation may not be straight forward. The 
commonly used methods, depend on data type and 
how much information is used from the observed 
data, varies from very simple to very complicated. 
The method of moment (MM) estimate is to solve 
the equation 
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 by replacing  with the observed number of 
segregating sites, which is the same as the total 
number of mutations in the observed sequences, 
under the assumption that mutation can only occur at 
most once at each site and is irreversible. This 
method is extremely simple, but does not use the 
data structural information at all. Also, it does not 
provide estimated standard deviation. For more 
detail of this method see Watterson [24]. The 
method based on coalescent tree and that based on 
number of mutations on each tree segments are also 
simple and more informative than the moment 
method. But in practice, the observed data are often 
not in the form of a coalescent tree, nor the number 
of mutations on each tree segments are directly 
available. Thus to use these methods, one needs to 
first infer the genealogy information to construct the 
coalescent tree or the number of mutations on each 
tree segments, by some other methods. Generally, 
the observed data is only in the form of some DNA 
sequences, with no additional information to 
construct a coalescent tree, nor the number of 
mutations on each tree segments. For this type of 
data, often we only know the number of segregating 
sites. It can also be represented as an unrooted tree 
or a certain number of rooted trees, the well known 
method in Griffiths and Tavaré S. [10], hereafter 
GT, is based on the full data information represented 
by a set of rooted trees. Detailed description on 
coalescent tree, rooted tree and unrooted tree can be 
found in Tavaré S. [25]. This method is one of the 
basic tools for this problem using full data 
information, but is computationally complicated. GT 
used the probabilities recursion formula, derived in 
Ethier and Griffiths [5], which is not easy to use for 
many geneticists. The methods of Lundstrom et al. 
[19] are a type of least squares (LS) method and 
likelihood one, in which the likelihood is not the true 
data likelihood, so they call the estimate from this 
likelihood independent-sites (IS) estimator. This 
latter method is also not simple computationally.  
 
 

3. Asymptotic Results of Some Existing Methods 
In order to answer the basic questions of consistency 
and the convergence rate raised in the Introduction, 
here we first investigate the asymptotic properties of 
the mutation rate estimations under three commonly 
used data forms for this problem: coalescent tree, 
segments of mutations, and number of mutations 
only, although the first two data forms are generally 
not directly available from the observed DNA 
sequence data.  
 
3.1 Estimation Based on Coalescent Tree.  
We first consider the case the data is in the form of a 

given coalescent tree of   sequences, as in Figure 1. 

This type of data assumes the coalescent times  's 

and the number of mutations   's on each branch 

are known. There are  nodes (splitting points) 

in the tree numbered 2 to   in their time order. 

Recall the definition of the   th coalescent time . 

Between the  th and   th node there are 

exactly segments, denote them as  from 

left to right, each has length . Then  is the 

number of mutations on segment . Denote 

 and 

 . Since the 
numbers of mutations on different segments are 
independent, the probability of  k given w  and the 

mutation rate    is 

 

 To compute the MLE  of   under the above 

model, let  be the log-likelihood of  under 

the above probability, and  be its first 

derivative with respect to . Set  , we 

get  
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where  is the total number of 
segregating sites in the observed data, it is also the 
total number of mutations in the observed sequences 
under the common assumption mentioned before. 

For i.i.d. observations's with common density 

function , the Fisher information plays an 
important role in the asymptotic distribution of 
estimators. It is defined as 

, and is equal to 

 
  
In our case, there is no common density function, we 
define the asymptotic Fisher information as 

  

 The reason we use  here instead of the common  
for the i.i.d. case will be clear in the proof. Denote 

 for convergence almost surely, and for 

convergence in distribution, and  be the true 
parameter value generates the data.  
 

Proposition 1. As   , we have i)  

 

ii) If   , then 

 
  

where   .  
 

Remark 1. Since , the convergence 

rate of  to  is . In contrast to the 

standard rate of  for the independent and 
identically distributed (i.i.d.) observation case, this 
rate is much slower. However this result tells us that 
as the number of observations increase without 

bound, the inference of   can achieve arbitrary 
accuracy.  

3.2 Estimation Based on Segments Mutations. 
The coalescent tree provides the full information for 
estimating the mutation rate, but generally the 
observed data are not in the form of a coalescent 

tree, i.e. often we do not have the  's nor the 's. 

Suppose we have the number of mutations 's on 
segments of the coalescent tree, but not the 

coalescent times 's. Let  be the density 

function of . In this case the 
likelihood is [8]. 

 
 and the corresponding log-likelihood is, up to a 
constant, 

 

 Set  , the MLE   of   is the 
solution of the equation 

which has no closed form. 
We still have  

Proposition 2. Suppose , all , for 

some , then as , we have i) 

 
ii) If  , then 

 
  
3.3. Estimation Based on Number of observed 
segregating sites only.  
 
In this case, let   be the total number of observed of 
segregating sites, it is also the number of mutations 
in the collected sequences as explained in Section 
3.1. The estimation of mutation rate is given by the 
moment estimator [24], 

as We have  
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Proposition 3.  

As , we have i)  

 ii) If   , then 

 
  
Remark 2:  
a) Klein et al. [17] obtained the same result above. 
Their proof is based on Laplace transformation, 
while we used the Lindeberg condition. 
 
b) Compare ii) of Propositions 1, 2 and 3, we see 

that the estimators ,  and  are 
asymptotically equivalent in the sense of 
asymptotical normality. This is a striking 
phenomenon, since for finite sample size, the lower 

bounds  and  for the variances of the three 

estimators satisfy [8]  
 
Our results indicate that the estimation of mutation 
rate is eventually determined by the number of 
observed mutations, the effect from the genealogy 
information will be dominated as the sample size 
increases without bound (similar phenomenon was 
also found in Fu and Li, [8]). 
  
c) On the other hand, for i.i.d. data, the convergence 

rate is , the asymptotic normality is valid 

roughly for sample size . In our case since 

the convergence rate is much slower, the 
sample size for validity of normal approximation 

will be much larger. If we require , or 

for this problem, this will be an 
impractical number. So, for moderate sample size, 
the estimation from the three methods can be 
significantly different as shown in Griffiths and 
Tavaré S. [10].  
Thus in practice, estimation of the mutation rate 
should take into account of as much information in 
the genealogy structure in the data as possible.  

4. The Proposed Method  

In practice, often the observed data of  sequences 

are not in the form of a coalescent tree, since the  
's are unknown; nor does it provide the number of 

mutations 's on the tree segments, but we have the 
number of segregating sites from the data.  
For example the mitochondrial data used in GT is 
given in Table 1 below. In this case, the method for 

  and  can not be directly used. A classical 
tool is the method of GT.  
The distinct sequences in the data are called lineages 
. Site at which not all the observed sequences have 
the same base is a segregating site, as shown in the 
following Table.  
{1cm} \centerline{Table 1. about here} {1cm}  
Each row of the table represents a DNA sequence 
lineage. In this data, there are 18 segregating sites, 
there are transitions but no transversion observed.  

Suppose we have the  's and  's, then the model 

is given by (4) and the estimate of  is given by the 

MLE , here  is just the number 
of segregating sites. We see that given the full 

information of  's and  's, only  

 and   are relevant in 

the estimation of . This suggest a very simple 

algorithm for estimating . As the 's are unknown, 
we generate them by simulation. To be specific, for  

, let  be the simulated value of 

 at iteration , we set our estimate of   as 

 
 The simulation method is described below. Specify 

a simulation size  (typically  ), for 

, do the following steps  
 

i) Sample  from the 

coalescent distribution as in (1), i.e., the 's are 
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independent, with . 

Or equivalently, sample  and set  

.  
 

ii) Compute  as in (5).  

iii) Compute the estimated variance  of  by 

Bootstrap, as: set , for   
compute 

 

Then the estimated standard error of   is   . 
Similarly as in the proof of Proposition 2, we have 
the following  

Corollary. First let , then , we have i) 

 
  

ii) If   , then 

 
  

Note  , from the above result, the 

standard deviation (SD) of   is approximated as  

 .  
 
5. Mutation Inference  
 

Now we use our method to analyze the data in Table 
1, which was taken from part of the data in Ward et 
al. [23]. They are from a segment of the control 
region, with 352 base pairs (sites), out of which 159 
of them are purine sites and 193 are pyrimidine sites. 
This data contains 63 sequences sampled from a 
North American Indian tribe, the Nuu-Chah-Nulth 
from Vancouver Island. After eliminating sequences 
with multiple mutations on some single sites, so that 
the assumption of at most one mutation each site is 
met. The remaining data has 55 sequences, with 14 
distinct lineages. The whole sequences are long, but 
only the segregating sites are informative for the 
analysis, the other sites are ignored.  

The mentioned full data has   k = 18 segregating 
sites, with   n = 55 and is presented in Table 1. We 
estimate the mutation rate by using all the data, the 
Purine data ( k= 5,   n=5) and the Pyrimidine ( k = 
13,  n=5) respectively, and compare the results with 
those from some other methods. 
The results from the proposed method and those 
from other methods are shown as in Table 2. 
Numbers are estimated mutation rate θ, in 
parenthesis are estimated SDs when available. 
{1cm} \centerline{Table 2. about here} {1cm}  
We see that the results from ours and those from GT 
and MM are basically consistent. 
 
6. Concluding Remarks.  
 

We investigated the asymptotic properties of the 
mutation rate estimation under some common 
settings, we show the commonly used estimators are 
consistent and asymptotic normal, but with a very 

slow rate of . We proposed a simulation 
based method of mutation rate estimation. This 
method implements the prior knowledge of the 
population genealogy, is simple to use, and yields 
comparable results with other methods. 

 
Appendix.  
 
Proof of Proposition 1.  
 

i) Recall the   's are independent with   

, 

  , and the   's are 

independent with   . Let 

  , then the   's are i.i.d. with  

 and   . Let   , 

then the   's are independent with 

  and   . 

Similarly, let   , then the   's are 

independent and identically distributed with 
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.  

We have  

where . Note for each fixed , and , i.e. is a Toeplitz 
sequence. By the strong law of large numbers for weighted sum of i.i.d. random variables (see Bingham 1986, 
for a review of such results), we have  

 

Since , we have  

 
 

 

ii) Since , we have  

 
In the proof of i) we have that  

 
so we only need to show  

 
For this, we only need to check the Lindeberg condition (Feller [6]) for the sum of independent variables 

. 

Let , and . Recall , so 

and ; 
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, so and . We have  

 
 

 
 

 

This gives  

Let be the distribution function of , the Lindeberg condition in our case is, for all ,  

 

Let be the indicator function, then for each fixed ,  

 
 

 

where is the density function of , and .  

Note is decreasing in for each fixed , and in for fixed , denote as a generic constant 

, then for all and , we have  
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where , the integer part of . The above inequality holds for all with some common 

. Also, as . Since , so for large , . Also, 

, thus  

 
 

 
Thus by the classical central limit theorem,  

 
which is the same as (A.1), as long as we show  

 
In fact, it is easy to see  

 

so, by the result in the proof of i), , hence  

 
This completes the proof of ii).  
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Proof of Proposition 2. As is not in closed form, the proof here is different from those in Propositions 1 
and 3. Note  

 
 

 

Since , so , where is an 

immediate value between and . We have  

 
i) We only need to show  

 
In fact,  

 

As in the proof of Proposition 3, i) below, (a.s.). By the similar way as in the proof of 

Proposition 1, i) can be written as a Toeplitz summation times a bounded normalizing constant, and 
we have  

 

Since , so by the assumption on , we get  

 

Also, formulate as a Toeplitz summation times a bounded normalizing constant, by the result for 
weighted summation we have  
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Thus (A.2) is true.  

ii). By i), we have (a.s.), and (a.s.). So we only need to show  

 
For this we only need to check Lindeberg condition for  

 

Note all , and , we have  

 

and . Lindeberg condition is checked the same way as in the proof of Proposition 1, ii), so  

which is the same as (A.3).   
 

Proof of Proposition 3. i) As in the proof of Proposition 1, i), recall the notation   's and   's there, we 

rewrite   as 

 

ii) Note , so we can rewrite as  

 

Denote , with . We have  
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Since , we only need to show    
 
Equivalently, we only need to check the Lindeberg condition for the sum of independent random variables  

 

Let . Note  

 
 

 
 

 
 

 
 

 

The Lindeberg condition is checked the same way as 
in the proof of Proposition 1, ii), and (A.3) is 
proved. 
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Tables and Figures 
 
Table 1. Nucleotide position in control region 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Comparison of Mutation Estimates 

 

 

Figure 1: Coalescent tree for a sample of seven individuals. 

     

 
 

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Linkage 
 Purines Pyrimidines freqs 
Linkage                    
a A G G A A T C C T C T T C T C T T C 2 
b A G G A A T C C T T T T C T C T T C 2 
c G A G G A C C C T C T T C C C T T T 1 
d G G A G A C C C C C T T C C C T T C 3 
e G G G A A T C C T C T T C T C T T C 19 
f G G G A G T C C T C T T C T C T T C 1 
g G G G G A C C C T C C C C C C T T T 1 
h G G G G A C C C T C C C T C C T T T 1 
i G G G G A C C C T C T T C C C C C T 4 
j G G G G A C C C T C T T C C C C T T 8 
k G G G G A C C C T C T T C C C T T C 5 
l G G G G A C C C T C T T C C C T T T 4 
m G G G G A C C T T C T T C C C T T C 3 
n G G G G A C T C T C T T C C T T T C 1 

Data GT MM IS Ours 
Purine & Pyrimidine 4.80(1.48) 3.93  4.196(0.351) 
Pyrimidine 3.31(1.14) 2.84 4.63 3.041(0.254) 
Purine 1.22(0.61) 1.09 1.27 1.170(0.103) 


