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ABSTRACT:

Estimating gene mutation rates using DNA data feopopulation since its coalescence is an impogaritin the study of
evolutionary genetic history, and is of its owneimst also. There are a number of existing metfardthis goal and are
successful in application, but formal asymptotiadstis absent except for the Watterson estimatmh ss consistency of
the estimator and its rate. Since the observed aetagenetically dependent, the problem is nondstah Here we
investigate the asymptotic property for the estiomabf mutation rate in a given population undeethcommon cases in
practice, estimations based on coalescent tre¢eddoee and the total number of observed segmyaites only. We
show, in each case, the strong consistency ofstimate, and its asymptotic normality with a velgusrate of(log n)*?,

in contrast to the standard rate n¥*for independently identically distributed data.#dtigh this result is known several
decades ago, we rediscovered this fact without kmpthe previous results and the settings and tionsiwe used are not
all the same as those previous studies. We alspopena simple simulation based method for the asitm of the
mutation rate using DNA data. The result is illagtd by a segment of the mitochondrial data fromiarerindian tribal
population, compared to some of the commonly uséstieg methods, and found to be consistent widséhmethods.

Key words: Coalescence, Convergence rate, DNA data, Geneditigfption rate.

1. INTRODUCTION

In the past decades, considerable progress has beefundamental role in the study. Also, mutation rate
made in the field of population genetics. One @& th estimation has its Owen interest.

main goals is to study the evolutionary historyaof The coalescent theory is a retrospective of
population under study since the time of their most population genetics that traces all genes in a Eamp
recent common ancestor (MRCA), in which from a population to a single ancestral copy shared
estimating the gene mutation rate in this poputatio by all the members of the population. The coalescen
since coalescence is a precursory step and plays dime of a population is the time of their MRCA at
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which their ancestral history converge. The gene coalescent tree, rooted tree and the total number o
mutation rate since that time in the population segregating sites only (the Watterson estimatog. W
directly affects the results in the study of the show the answer to the above problem is affirmative
population evolutionary history. As an indispensabl for each case, with common convergence rate of
element in such study, the mutation rate is to be (log n)*? to normality.

estimated using the observed DNA sequence In contrast to the convergence ratet in the case
diversity from a sample ofn individuals of i.i.d. data, the above rate is very slow. Thisvhy
independently drawn from the population of known sometimes apparent improvement in estimation of
sizeN . The problem is not as seemingly simple as mutation rate is not observed with increased sample
the gene frequency estimation, since often mutation size. After our work is done, some readers point ou
are rare events, the generations spans a longyhisto that the asymptotic normality result has been known
and the data are a highly dependent sample withsince around 1970, and that for the Watterson
varying dependence structure over generations. estimator has already been done by Klein et al. [17]
Also, the data should be from a relatively closed However, our proof method is very different from
population, so its expensive and time consuming to theirs, and the settings and conditions used here a
collect. not all the same as in those previous studies.

For this problem, there are many methods. Also, often the DNA data only provides the number
Watterson [24] derived moment estimator using the of segregating sites, not information in the forfrao
number of observed segregating sites alone, coalescent tree, nor the number of mutations it eac
Felsenstein [7] and Kuhner et al. [18] proposed branch of the genealogy tree. So methods based on
maximum likelihood estimate (MLE) of related likelihood models using coalescent tree or the
parameters. Fu and Li [8] and Fu [9] derived lower number of mutations in each branch of the
bound for the variance of the MLE and the best genealogy tree are not directly applicable. Albe, t
linear unbiased estimate, under the assumption thatmethod using the number of segregating sites only
the number of mutations on each branch of the does not use the prior information in the genealogy
coalescent tree are known. Recently some studiesat all. Since the convergence rate of mutation rate
[12,22,20,4,14,2,11] investigated mutation rate on estimation is very slow, estimation with finite
on X or Y-chromosome microsatellite and mtDNA sample size is more efficient if we implement such
data without using the genealogy tree. However, prior information. Here we propose a very simple
asymptotical properties of these methods, such assimulation method for this problem, with the
consistency of the estimates and the asymptotic genealogy information - the prior coalescent times
normality are not seen in the literature. Heredh&a distribution implemented, without using neither the
is genealogically dependent, and evolve over time, coalescent tree nor the number of mutations in each
the scenario is very different from the common case branch of the genealogy tree, as such informaton i
of independent and identically distributed (i.i.d.) not directly available for most DNA data. Also, the
data. Some simulation studies did not show apparentMLE of the mutation rate under the full data
concentration of the estimator to the true paramete information of the form of a coalescent tree, the
value as the sample siZe increases, although the estimation turns out only depend on the total numbe
accuracy improves a little bit. A natural questisn of observed mutation sites in the data and ther prio
whether the estimator will be consistent as the tree length. The latter is often unknown in praztic
number of sample$tends to infinity? If it does, at  We implement such information by simulation from
what rate? Here we investigate this problem under the prior coalescent distribution. The result is
three common cases in practice, estimations basedllustrated by a real example, compared to some of
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the commonly used existing methods, and found to example of such coalescent tree of sample size n=7

be consistent with these results.
Mitochondrial DNA data are commonly used in

gene mutation studies. It is one of the few genes \vspace*{1cm}

exist outside the cell nucleus, and for mammalian i
is only maternally inherited. Human mtDNA is a

is given in Figure 1.

{1cm} \centerline{Figure 1. about here} {lcm}
%\centerline{\psfig

{figure=mutfigl.ps,height=6cm,width=7cm,angle=0
1} %\begin{figure}[htb] %\caption{Coalescent tree

double-stranded molecule sequence about 16,500for a sample of seven individuals.} %\end{figure}

base pairs in length. It is known that the mutation
rate in mtDNA is about 10 times that of the nuclear
genes, and that on one part of the mitochondsa, it
control region, is even one order higher. The sémpl
inheritance pattern and high variability make
MtDNA an important source to study human
evolutionary history. In Section 2, we give a brief
review of the background of the problem and three

In this Figure, w is the time, in unit of 2N
generations, between the points when the sample of
seven people from a given population has 2 and a
single common ancestor, 3\ the time between the
points when the sample has 3 and 2 common
ancestors, etc. For more detailed reviews materials
of this topic see Hudson [13], Donnelly and Tavaré
S. [3].

commonly used methods. Section 3 studies the In coalescence inference there are some explicite
asymptotic behavior of these methods, with relevant and implicite assumptions in the literatures, which

proofs in the Appendix. Our study shows that fa@ th
estimation of the mutation raée , all these methods
are asymptotically equivalent with convergence rate
(log n)*? , a much slower rate than the typical rate
of n¥? for independent and identically distributed

we list below.

Basic assumptions:
The population siz8l is large, remain unchanged for
many generations into the past, and is known, or ca

data. The reason is that the observed sequences arbe estimated from other sources; the data is a

highly dependent. Thus, as the validity of asyniptot
result requires impractically large sample size, in

random sample from the population; the number of
births in each generation follows the Wright-Fisher

practice we should take as much genealogy model (since the population is of constant size, th

information as possible. In section 4 we presemt ou
proposed method, and Section 5 illustrates itsonse
a segment of the mitochondrial data from an
Amerindian tribal population, and compare the
results with those of others, with brief concluding
remarks in Section 6.

2. Brief Review of Background and Related

M ethods

The gene mutation rate is the probability that a
mutant type occurs in a given reference time period
For example in many studies such time period is
taken as per generation. In population history

number of deaths also follow the similar model);
mutation (substitution) at any nucleotide site can
occur only once in the ancestry and is irreversible
mutations occur in different time intervals are
independent; all loci have the same mutation rate;
the time point at which mutation occurs follow a
Poisson distribution with rat®/2 to be defined
latter, independently in each branch of the gemgalo
tree.

Here estimatin@ based on the observed DNA data
and investigating its asymptotic behavior are the
goals of our study. The inference®énd that of the
coalescence timg of a sample population of size

studies, the time period is since the coalescefice 0 has close relationship. The latter has two steps. T

the population to present. The coalescent is a mode first step is modeling the distribution of

withtou

for the genealogical tree of a random sample of any data, the pre-data distribution; then in treed

"DNA sequences from a large population. An
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step, update the pre-data distribution, using the
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observed data, to the post-data distribution, based For mutation, the common assumption is that the
which the formal inference is conducted. The pre- times at which mutation occur follow a Poisson
data distribution is pioneered by Kingman [15,16], process with constant ra¢2, so that in any branch

who showed that in time units oN generations, ot |ength! from the tree, the number of mutations

- iu.J.:(l) on that branch has a Poisson distribution with mean

1612, independently of the mutations on the other
where the™i's are independent waiting tim*s is branches. For the time scale mentioned before,
the duration between the sample had j and j-1

i usually‘g| = 2Nt | wherek is the probability of a
common ancestors (see, for example, Tavaré S.

'mutation occurs per sequence per generation. For

W i i .
[25]). Here ™i is distributed as the exponential DNA sequencest is the sequence length (number

model ~ Exponential GG — 1)/2)  with mean of bases) times the mutation rate per site per
E(w;) = 2GG - 1)) TheWi's can be represented generation. and often available from existing stadi
graphically as a coalescent tree as in Figuredn th Since the coalescent time of a sample with moderate
is the height of the tree. Define the tree's tbtahch size is approximatelyr"" generations, 8 can be
approximately interpreted as the commulative (since
= Zjulh the time of MRCA) mutation rate (number of
length ~ as J=1 then  (Kingman) mutations) per sequence. Also, since the population
size isV, 8’2 can also be interpreted as the mutation

R
Et,) = 21- % Var(t,) = SZ lﬁ _4]- %3; rate of the whole population per generation.
Iz ‘ Thus given the mutation rafand the tree length

frz, the number of mutation®» in a sample of

-l i -l i individuals from the given population follow the
=7 7 ;
E(‘F") - "Z i Va (‘F ) 42 ._3":") Poisson distribution (61./2)) [25].
il 17
Thus on average the coalescence timdl opeople Py =kly=1)= g ( i =Pk BI2) k=012 (3
of the given population is abouN generations K

back into the past. The time unit is transformed to Note this probability does not depend™nbut ok
years by the relationshipNY , whereY is the I and
an

average years of each generation, which usually’
taken as 20-25. Now we come to the problem of estimating the
Here we see that, as an initial analysis withoet th mutation rate? . Given the sampled sequence data,
observed data, the coalescent time of a randomwe don't know which sites are mutant, and the data
sample of sizen from a population of sizé\ is have inhomogeneous dependence among them. So
the estimation may not be straight forward. The
b commonly used methods, depend on data type and
how much information is used from the observed
data, varies from very simple to very complicated.
The method of moment (MM) estimate is to solve
the equation

roughly 2N generations, as long as(= N) js

moderately large. Thus the coalescent time of a su
sample from a population is roughly the same ais tha
of the total population (as long as the sample isize

moderately large). Here the sample must be a
random draw from the population, otherwise the
result may not be reliable. Es5)=0hn, hn=1+12+--+1/n-1)
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by replacingE(E) with the observed number of 3- Asymptotic Results of Some Exist-ing Methodg
segregating sites, which is the same as the totgl!N order to answer the basic questions of consigten
number of mutations in the observed sequences and the convergence rate raised in the Introduction
under the assumption that mutation can only occur a Nere we first investigate the asymptotic properies
most once at each site and is irreversible. This the mutation rate estimations under three commonly

method is extremely simple, but does not use the used data forms for this problem: coalescent tree,
data structural information at all. Also, it doestn ~ Se€gments of mutations, and number of mutations

provide estimated standard deviation. For more ONly; although the first two data forms are gerigral
detail of this method see Watterson [24]. The NOt directly available from the observed DNA
method based on coalescent tree and that based og€duence data.

number of mutations on each tree segments are also o
simple and more informative than the moment 3-1EStimation Based on Coalescent Tree.

method. But in practice, the observed data arenofte We first consider the case the data is in the fofa

not in the form of a coalescent tree, nor the numbe given coalescent tree f sequences, as in Figure 1.
of mutations on each tree segments are directly Thig type of data assumes the coalescent tiWiis

available. Thus to use these methods, one needs to e
first infer the genealogy information to constrtiut and the number of mutations®#’s on each branch
coalescent tree or the number of mutations on eachare known. There ar? ~ 1 nodes (splitting points)
tree segments, by some other methods. Generally,in the tree numbered 2 # in their time order.
the observed data is only in the form of some DNA
sequences, with no additional information to _ _
construct a coalescent tree, nor the number of Between the (i~ 1ith and ith node there are

Recall the definition of the th coalescent tim*:.

d_ata, often we only know the number of segregating left to right, each has lengi¥:.
sites. It can also be represented as an unroaed tr .
or a certain number of rooted trees, the well known Number of mutations on segmer#. Denote
method in Griffiths and Tavaré S. [10], hereafter k= {ky:i=2.....nyj=1....i} and
GT, is based on the full data information represgént « = fwii=2 . ..mj=1__.i}%
by a set of rooted trees. Detailed description on
coalescent tree, rooted tree and unrooted tredean
found in Tavaré S. [25]. This method is one of the
basic tools for this problem using full data
information, but is computationally complicated. GT P(kjw.8) — ﬁﬁPo{k[—,—:wﬁ&-’Ej.{4)
used the probabilities recursion formula, derivad i =2 =1
Ethier and Griffiths [5], which is not easy to use
many geneticists. The methods of Lundstrom et al.
[19] are a type of least squares (LS) method and model, letL1.2(9) be the log-likelihood 0f under
likelihood one, in which the likelihood is notthee  the above probability, and 1.8 pe its first
data likelihood, so they call the estimate frons thi
likelihood independent-sites (IS) estimator. This _
latter method is also not simple computationally. 81, — 235 Z_Jr-—l Fo _ 2%
get S Ln

Then ki is the

. Since the
numbers of mutations on different segments are
independent, the probability ok givenw and the

mutation rate g is

To compute the MLEP 12 of @ under the above

derivative with respect tf Set‘ti:n(a) =0 , we
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E=%"%" ky
where Qa2 ki is the total number of
segregating sites in the observed data, it is tigo

3.2 Estimation Based on Segments Mutations.
The coalescent tree provides the full information f
estimating the mutation rate, but generally the

total number of mutations in the observed sequencesobserved data are not in the form of a coalescent

under the common assumption mentioned before.

For i.i.d. observatiorfi's with common density

functior/"[€), the Fisher information plays an
important role in the asymptotic distribution of

estimators. It is defined as
I(8) = —E+[8*10gf1x/8)/66°] and is equal to
16) = ]IED B %Z c‘lt}?g{zxdﬁ)_

=1

In our case, there is no common density functiam, w
define the asymptotic Fisher information as
LézlogP{Mw:G)
L = e AR

&g

70> — g —

re

The reason we u¢i= here instead of the comm?n
for the i.i.d. case will be clear in the proof. D¢
a.s. D

— for convergence almost surely, ar—for

convergence in distribution, arfo be the true
parameter value generates the data.

Proposition 1. As m=o | we have i)
B1n prd .
i) If 6o > 0 then

f’i‘&::(ﬁ'l:n —-8p) 2 N(0.I7(8,))
where {(60) = 1/6p

Remark 1. Since’=/log(n) = 1 the convergence
. 12
rate of?1.n to B0 is (logn)** |n contrast to the

standard rate of?fll2 for the independent and
identically distributed (i.i.d.) observation caghis
rate is much slower. However this result tellshat t
as the number of observations increase without

bound, the inference off can achieve arbitrary
accuracy.

Ao Yuan and Guanjie Chen

tree, i.e. often we do not have "i 's nor the’fftf's.

Suppose we have the number of mutati®ds on
segments of the coalescent tree, but not the

coalescent timeswr',r"s._ Let fIwi) be the density
=1 "

is

In this case the

(8]
(1+i-1)8%

E+L°

function of '
likelihood
P8) = [T [TTiPotky. w6t = [ ] T
=l 2 =

2 o

el
and the corresponding log-likelihood is, up to a
constant,

Ly ,(8) = Z"‘[F(r-lcg((-?) — (& + 1)log(@ +i— 1)].

=2

Setﬂz:n(ﬁ) =0 , the MLE B20 of O is the
solution of the equation
kf + 1 _ i
— g+i—1 Ch

which has no closed form.
We still have

Proposition 2. Suppose® = 02n = C, all #, for

some? < ¢ = C < = then as” = * we have i)

61, = 6.

ii) If
12 D .

hn~ (62,,—80) = N(0.I(8)).

6o > 0 then

3.3. Estimation Based on Number of observed
segregating sitesonly.

In this case, let be the total number of obsenfed
segregating sites, it is also the number of mutatio

in the collected sequences as explained in Section
3.1. The estimation of mutation rate is given bg th
moment estimator [24],

HS:P‘E =

Kk
.
as We have

61



ON THE ESTIMATION OF MUTATION RATE BASED ON COALESENCE GENEALOGY

Proposition 3. 4. The Proposed Method

AsH = ® we have i 831 o, In practice, often the observed data’o$equences
- ’ ’ g 0 are not in the form of a coalescent tree, since*ine
i) If 0= then

's are unknown; nor does it provide the number of

1/2 _ 2 AT 1 .
fin " (3 — B0) = NO.I7(80))- mutations¥i's on the tree segments, but we have the

number of segregating sites from the data.

Remark 2: . For example the mitochondrial data used in GT is
a) Klein et al. [17] obtained the same result above. given in Table 1 below. In this case, the methad fo
Their proof is based on Laplace transformation, 8,

g2, i '
while we used the Lindeberg condition. » and“2Z» can not be directly used. A classical

tool is the method of GT.

The distinct sequences in the data are calleddie®a

. Site at which not all the observed sequences have
that the estimatorsf1x, 622 and 932 are the same base is a segregating site, as showe in th
asymptotically equivalent in the sense of following Table.

asymptotical normality. This is a striking {1cm} \centerline{Table 1. about here} {1cm}
phenomenon, since for finite sample size, the lower g50n row of the table represents a DNA sequence
bounds?1-£2 and®3 for the variances of the three lineage. In this data, there are 18 segregatires,sit
there are transitions but no transversion observed.

b) Compare ii) of Propositions 1, 2 and 3, we see

b1 = b2 = bs.
: Suppose we have th**i''s and ki's, then the model

Our results indicate that the estimation of mutatio iS given by (4) and the estimate®fs given by the

rate is eventually determined by the number of MLE 917 = 2KD0 ™ herek is just the number

observed mutations, the effect from the genealogy of segregating sites. We see that given the full
information will be dominated as the sample size
increases without bound (similar phenomenon was :
I . . k= Znﬁzr .IE':.-U ZH W .
also found in Fu and Li, [8]). =2 £4j=1"Y gnd Zu=2™1 are relevant in

estimators satisfy [i

information  of Wits  and K 's, only

. the estimation & . This suggest a very simple
¢) On the other hand, for i.i.d. data, the convergenc

algorithm for estimatin{?. As theWi's are unknown,

112
_— , o ,
rate is , the asymptotic normality is valid we generate them by simulation. To be specific, for

roughly for sample siz#? = 20 In our case since m = 1 M et ) be the simulated value of
3= ===zt y P

112,
the convergence raillog27) " “is much slower, the

i L . : Wi at iteration™, we set our estimate of as
sample size for validity of normal approximation

AL

will be much larger. If we requirleg(n) = 20 of On = 47 - ﬁ-ﬁ)

7 2 483163193f0r this problem, this will be an The simulation method is described below. Specify
impractical number. So, for moderate sample size,
the estimation from the three methods can be
significantly different as shown in Griffiths and ™" = L.---.M  do the following steps
Tavare S. [10]. ) )
Thus in practice, estimation of the mutation rate jy sample W™ = (wi™ L wimy
should take into account of as much information in

the genealogy structure in the data as possible.

a simulation size™ (typically M = 10.000 ) for

from the

o . , Jim)
coalescent distribution as in (1), i.e., i 's are

Ao Yuan and Guanjie Chen 62



ON THE ESTIMATION OF MUTATION RATE BASED ON COALESENCE GENEALOGY

- ™ Evponential(iti — 13/2 The mentioned full data has k = 18 segregating

independent, witl™s i _ « 2. sites, with n = 55 and is presented in Table & W

or equivalently, sample? ~ U(0.1) and set  estimate the mutation rate by using all the ddte, t

wE"‘:' = -2/(i(i— 1)) (1 — ) Purine data ( k=5, n=5) and the Pyrimidine ( k =
' 13, n=5) respectively, and compare the resulth wit

those from some other methods.
ii) Computegrz as in (5). The results from the proposed method and those
from other methods are shown as in Table 2.

iii) Compute the estimated varian@» of n by Numbers are estimated mutation ra@ in

Bootstrap, as: sV ® M1000 for 7=1.....N parenthesis are estimated SDs when available.
compute {1cm} \centerline{Table 2. about here} {1cm}
. v We see that the results from ours and those from GT
b= % > - oi-L362-62 and MM are basically consistent.
T (1001 Z.-_l W =1

Then the estimated standard erro?nfis O . 6. Concluding Remarks.

Similarly as in the proof of Proposition 2, we have We investigated the asymptotic properties of the
the following mutation rate estimation under some common
settings, we show the commonly used estimators are
consistent and asymptotic normal, but with a very

8, = 8y slow rate ollogn)™? e proposed a simulation
based method of mutation rate estimation. This
method implements the prior knowledge of the

i) If 6o > 0, then population genealogy, is simple to use, and yields

12 D ... comparable results with other methods.
hn (8 —80) = N(0.I'1(8))).

Corollary. First letM = = then” = = we have i)

Appendix.

Note rl(E") = "3, from the above result, the o
o ] ] Proof of Proposition 1.
standard deviation (SD) &r s approximated as

12,12
SD(Er) = hn On” ) Recall the Wi 's are independent with

5. Mutation Inference w; ~ Exponential(i(i— 1)/2)

Now we use our method to analyze the data in Tableﬂw"?J =2GE-1) , and the ki s are
1, which was taken from part of the data in Ward et . ) e . wlnl2

al. [23]. They are from a segment of the control independent with Fulvr ~ Po(twiBol2) - pet
region, with 352 base pairs (sites), out of whi®® 1 y; = (i — 1)w;/2
of them are purine sites and 193 are pyrimidinessit _
This data contains 63 sequences sampled from a, _ v ki =%" Kk
North American Indian tribe, the Nuu-Chah-Nulth i~ (D) ang E00) =1 Let 2tk
from Vancouver Island. After eliminating sequences
with multiple mutations on some single sites, st th
the assumption of at most one mutation each site isk;jw; ~ Po(=.iw;if0/2) gng Elkilw;) = w812
met. The remaining data has 55 sequences, with 14

distinct lineages. The whole sequences are long, bu Similarly, let 7i = (i—1)k: | then the ™i 's are
only the segregating sites are informative for the
analysis, the other sites are ignored.

, then the ¥i 's are i.i.d. with

then the krs  are independent  with

independent and identically distributed with
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E(m;) = (i— DE[E(kijw:)] = (1— 1)E(iwifo/2) = by,

s XLk YLG-DTm Y awm

5|l:r‘z

ZL w; Z'_;E(z’— 1)y ZL aniVi

We have

: -1y : . : n = . 3 . .
where@nri = (i = 1)7"/hn Notelimran: = Ofor each fixed, and2mlani= 1 < * i.e.{aniris a Toeplitz
sequence. By the strong law of large numbers faghted sum of i.i.d. random variables (see Binghi®86,
for a review of such results), we have

n H
D anii—E@) 50 Y anlm—E(m) = 0.

since2 2 @niEWi) =1 e have
- Z'_iﬁan_fE(?ﬂf)+Z'.t-,an.r'(mr'_E(mf))
1= p-p; - r_rz‘ :
’ Zf—] dn:fE{}'f) + Zf—] an:f{}'f - E{J”r))

a:_.i. lﬂzzzan:fﬁ'(mr') o Zi: an:r"gﬂ — 8,
" Z;: aniE(yi) 8 Zzg An i

ii) Since?1n = 2 IO, i'2) \we have

hrz Z'_;E(}Tﬁ - zw,HEE)

hiz(él:n —6o) =

Dy Wil I
In the proof of i) we have that
IIIE'r‘z — 1 a_“i' 1

H. oy ]
ZH w;/2 ZH QA Vi
so we only need to show

P.E., ki — twiB /2
2289 2 No.r 0o, (1)
fin”

For this, we only need to check the Lindeberg doodiFeller [6]) for the sum of independent vatesb

Zi: (ki — iw;80/2)
LetXi = ki — z'w,-t?c.-"l’ Sy = ZL x"andgz(s") = Zi: chr(x,-)' Recallkiw: ~ Po(-. z'w,-t?.;.-"l), so

E(kilw;) = Var(kiw;) = z'w,-E.;.-"EandE{kﬂw,-) = Var(k;jw;) + Ez{k,-|wr-) = wiPp/2 + z'zwfﬁé_-ﬂ;
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wi ~ exp(i(i — 1)/2) goE(w;) = 2/(i(i — 1))ang Var(w:) = 4(i*(i - 1)*). we have
E(x;) = E[E(xijw;)] = E[iw;80/2 — iw;80/2] = 0,

Var(x;) = E[Var(xitwi)] + VarlECxiiws)] = E[Var(xdw:)] = E[E(ctws)]
= E[E((ic? — ilw 8 + i2w?824)w;)] = E[iw82/2] = 8y/(i— 1).
This givesﬁ:(sn) = hnfo.
Let £i(*)be the distribution function ¢*i, the Lindeberg condition in our case is, for€ = '3,

1 "

_ J' x2dF(x) = 0.
cr‘(S,t) 2 aec(Sa)

Let #(*)be the indicator function, then for each fixed

I x2dF(x) = E(x?y (= Egé.-'lhrlt_-':))
e iSa)

= FEGI 7(pei2 637 h)wn)] = [ Quitwlfitwiabw,

2.2 L2, 12,
wherefi(W)is the density function i, and@ni(w) = E[x;x“(beilz €8y "hn " )jwi = w],

Note.[ Q"(Wf)ﬂw")wfis decreasing it*for each fixeo‘i', and intfor fixed M, denotetas a generic constant
0 < ¢ < ® then for al’and’, we have

I Onilwlifi(w)dw < cOpni(E(w;))

' a2 —iEfw g2 GE(wi)8o/2)
=r 2 (r— iE(w;)80/2)e ﬂu_.,ﬂ.;.;%
r2iElws B0 2regy hL

=r 2 (?‘ - EE(E _ 1))22—6‘-}:(6—1)w
¥l
J‘Eﬁ'-l"(r'—l:n—eal::lllhll
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(r=8o/(i - 1))° —E;(r—ll( H.; ) 2 (Bo/(i— 1))
(r—2)!

Z s Hr—1)
refol -1y h1T
! 8o/(i— 1))
e 3 ey

(Bo/i=1)7" _
rzedy k12

¢ 2]: =2

refo(i-1esy RE2

(-
12,112
2= 2 Also,

=c
(7n 1)(’/‘_2"
(€60 hn"] the integer part &f0 " n” The above inequality holds for &llith some common

where’n
0 <c<w® Ao, = ®ashn = = gincefin'logn) = 1 5o for large?, 7=

1 J' ¥2dF (x) < e 65" 2 1
03(Sm) S sy T T B0k (= DI S (- 1)FD
(r.—2)
c 1 &y 0
Bohy (rn_?)l

L Z 1 .
iz -0

=c
gl}hrz (rrz - F’)I
Thus by the classical central limit theorem

2o By 1y

G (Sn)
which is the same as (A.1), as long as we show

I(6o) = 1180
In fact, it is easy to see
83

L"n(6g) =
=2 J‘—].

L"n(gﬂ) lmzr';]kf = lim
Chn " hB3 n 63

so, by the result in the proof of i» D2 @nimi = 60 pence
D rp AniMi _

I(6o) = -
This completes the proof of ii)
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Proof of Proposition 2. As F2.nis not in closed form, the proof here is differéom those in Propositions 1
and 3. Note

F(i—1) -8
L2a® = ZE{E+:—1)

’ Sk i+ 1
Ly @=S" L, K+l
2(®) ; 82 (B+i—1)>

Sinceﬂﬁn(gln) = I:I, SO_LII:H(HU) = LIZ:H(EI:R) - LII:H(HU) = Llll:n(ér‘z){gln - HE)’ Whereénis an

immediate value betweé? tand?2.n, We have

B2n— 80 = [-L" 2x(Bn)/hn] "L} ,(80)/hin.
i) We only need to show

]ﬁéﬂ - Lﬁ':n(én}-"hn = 0, ]jngzﬂ'h(ﬂc).-’hn =0.(4.2)
In fact,

L6 XLk 1§ kit
fin é,zt hin fin 2 (én'l'!'— 1)2

As in the proof of Proposition 3, i) beloxz 2 Killin — g”(a.s.). By the similar way as in the proof of

By

Proposition 1, i~ -1)* can be written as a Toeplitz summation times a dedmormalizing constant, and

we have

S | . fc+1 as. E(Ic)+1 Goli-1+1
_ = = — 00

Z} (B +i—1)2 ~ (i- Z _Z (i—1)2

. Wt e~ O .
Since/in = =, so =8 Ber-l)t by the assumption c‘glﬂ, we get

Ly Bn) 1 Xk 1N K+l 6
]JID._ < R = —].ttﬂ el _]]Iﬂ— I = v |:|
; S C R Z G-D2 _C

Also, formulateF22(80)as a Toeplitz summation times a bounded normalieargstant, by the result for
weighted summation we have
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. Ly, B0) s (i- DE(k) -8
lim —=2 7 = fim ;! 70— 0.
R i n ":Z; 8,8y +i—1)
= Thus (A.2) is true.

ii). By i), we haved» = 8o(a.s.), anc L2.4(@n)in = 1805 5 ) 50 we only need to show

Lﬂ(u)n

12
L

For this we only need to check Lindeberg condifmm

G- Dki—6p _
:E: 8,0, +z-—]z :E:*:

5 N(0.80).(4.3)

Note £(x2:) = Oy i 5 ng¥arixai) = E{x%_f) = 1/(Go(Bo+i—1)) _we have

G(Sﬁn)—ZVar(x:r) Zm (gz—l 2(1_1)(5134'!—1))

¥

and® " (52n)/hn = 180, Lindeberg condition is checked the same way aisdarproof of Proposition 1, ii), so

S'- D
=R OO0,
o0y D

which is the same as (A.3).

Proof of Proposition 3. i) As in the proof of Propaosition 1, i), recalktimotation™: 's and@~.i 's there, we
rewrite 93.7 as

-1

1
= Zan:r'mr' - lEt"ﬂZHn:fE(mr-) = fy.

fm2

ii) Note E(ki) = E[E(kiw:)] = Eliwi80/2] = (i~ 1)"'60, 50 we can rewrit? 3nas
D ki Do ki
hn S E()Bo

HS:P‘E

=1 -2

Denote?3.n = 113.a(80) = Iin + 5ufo_\yith by =2 ' . We have

) hyn 37 (e — Ek; »
h;n(ggn_gc) = ?-. Z 1.2
| R
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37,0k~ E(k) o

12
; h
Sincehin-'hn - 1, we only need to show 3

N(O0.I1(80))-(4.3)

Equivalently, we only need to check the Lindebergdition for the sum of independent random varigble

Sam= D U= E(k)) =D (ki=0/(i—1)) =D x3;

Let @ (530) = 30, Var(x3:) Note

E(xsdw:) = iwiBo/l2— 60/(i— 1). E(x3 fw:) = iwiBo/2 + i*w]05/4 — w83 + 05/(i— 1)?

Var(xswi) = E(x%:r'lwf) — E¥(x3,4wi) = iwiflo/2.

ElVar(xswi)] = 80/2)E(w;) = 8o/(i - 1),

Var(E(xs w;)) = i2(85/4) Var(w;) = 83/(i— 1)2,

02(S3,,) = D Var(xs;) = 3 E[Var(xs w))] + VarlE(xesziw;)] = s q00.

The Lindeberg condition is checked the same way as
in the proof of Proposition 1, ii), and (A.3) is
proved.
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Tablesand Figures

Table 1. Nucleotide position in control region

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |18nkdge
Purine! Pyrimidine: fregs

Linkage

a A G G A AT C CTOC T T C T C T T C|2

b A G G A A|T C C T T T T C T C T T Cc| 2

c G A G G A|jC C Cc T C T T C C C T T Tl 1

d G G A G AJjC C C C cC T T C C C T T Cl 3

e G G G A AT C C T C T T C T C T T C| 19
f G G G A G| T €C C T C T T C T C T T Cl1

g G G G G Aj]C C Cc T C C C C C C T T T 1

h G G G G Aj]C C Cc T C C C T C C T T T 1

i G G G G Aj]C C Cc T C T T C C C C C T 4

j G G G G Aj]C C Cc T C T T C C C C T T 8

k G G G G Aj]C C Cc T C T T C C C T T Cl 5

| G G G G AjC C Cc T C T T C C C T T T 4

m G G G G Aj]C Cc T T C T T C C C T T Cl 3

n G G G G Aj]C T C T C T T C C T T T Cl1

Table 2. Comparison of Mutation Estimates

Data GT MM IS Ours

Purine & Pyrimidine 4.80(1.48) 3.93 4.196(0.351)
Pyrimidine 3.31(1.14) 2.84 4.63 3.041(0.254)
Purine 1.22(0.61) 1.09 1.27 1.170(0.103)

W 2

X yd AN

Figure 1. Coalescent tree for a sample of seven individuals.
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